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An almost-inviscid geostrophic flow 
By L. M. HOCKING? 

University College London, Cower Street, London, W.C. 1 

(Received 24 March 1961 and in revised form 4 July 1961) 

An almost rigid rotation of a viscous fluid is produced by dividing the containing 
cylinder into two sections and rotating them at slightly different speeds. The 
fluid velocity can be separated into two parts, a swirl about the axis and a 
streaming motion in the axial planes. When the difference in the speeds of rota- 
tion of the two sections is small, the equations of motion can be linearized. The 
solution is found for large Reynolds numbers and provides an illustration of the 
way in which the conditions of geostrophic flow (no velocity variation in the axial 
direction and an inability to insist on undisturbed flow at infinity) are approached 
as the Reynolds number tends to infinity. 

A geostrophic flow is a small relative motion imposed on a steady rotation of an 
inviscid fluid. It is known that the rotation prevents any variation of velocity 
in the direction of the rotation vector. It is impossible, therefore, to maintain a 
boundary condition of undisturbed flow at infinity and the motion is in some cases 
indeterminate. A way of avoiding this difficulty is to solve the corresponding 
viscous flow problem and then to consider the inviscid limit, but this process is, 
in general, too difficult to carry out. It is, however, possible to solve the viscous 
flow problem in certain simple cases, one of which is discussed here to illustrate 
the way in which the conditions of geostrophic flow are reached as the Reynolds 
number increases. 

The example chosen is a long cylinder divided into two sections rotating with 
slightly different speeds. The enclosed fluid will rotate rigidly with the cylinder 
at a large distance from the plane of division and the solution of the equations 
of motion will show how the speed of rotation varies along the axis and will also 
give the nature of the circulatory flow produced by the axial variation of the 
radial pressure gradient associated with the rotation. 

If ( r ,  8, z )  are cylindrical polar co-ordinates, the velocity components (u, w, w) 
are independent of 8. The angular velocity of the cylinder is Ql Q2 according 
as z 0, and the radius of the cylinder is a. A non-dimensional stream function 
is defined by 

and the azimuthal velocity can be written 

v = aQ1 r + aR,X/r. (2) 
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Since only a slight variation in the speed of rotation of the cylinder is postulated, 
R,/!J, is small and only the fist-order terms in $ and x in the Navier-Stokes 
equations need be included, which yields the equations (see Proudman 1956) 

where the Reynolds number R = Qla2/y. All lengths are non-dimensional with 
a as unit. The boundary conditions on the cylinder are 

x =  & l  at r = l , z = O ,  

$-+O as z + & o o ,  
and, a t  infinity, 

x1?.2+ + 1  as z +  +-a. (8) 

The solution of these equations with R infinite is the geostrophio flow and in 
this case $ and x are functions of r only which, as mentioned above, is a well 
known result for such flows. Since the fluid is now inviscid, the boundary con- 
ditions (6 )  and (6) must be replaced by @ = 0 on r = 1 only, and it is clear that 
the conditions at infinity cannot be satisfied. All that can be said about the geo- 
strophic flow is that i t  consists of a rotation and a streaming motion parallel to 
to the axis, both of which depend in an arbitrary way on the distance from the 
axis. When the solution with R finite is found, however, this arbitrariness 
disappears. 

The equations (3) and (4) give a sixth-order equation for the stream function 

and the solution proportional to cos u z  and finite on the axis is 

cos UZ(ArIi(U1r) + B T I ~ ( u ~ ~ )  + C T I ~ ( U ~ T ) } ,  

(10) 

where u2 

~f = U ~ + U ~ ( ~ R U ) ~ ,  

- - u 2 + (2Ru)*, 
g = U2+W(2RU)%, 

and w is a complex cube root of unity. The stream function, which is an even 
function of z, can be written 

and the corresponding form for x, found from (3), is 
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Solving for the coefficients and substituting in (1 1) and (12) gives 

(14) 
I (u r )  

sinuzdu, 

where = u310(u3) ' 1 (u2)  - u210(u2) 11(u3)r (15) 

and a2 and a3 are defined similarly by interchanging the suffixes cyclically, and 

A = U l d ( U J  Il(u2) 11(u3) + '3J2U210(U2) 11(u3) II('%) + W'%Jo(%) Ii(U1) Ii(u2). (16) 

If it is now supposed that R is large, (10) can be replaced by 

u1 = (2Ru)*, u2 = u,exp (ni/3), u, = u,exp (--7ri/3), (17) 

and the roots of A = 0 are at the points u1 = As exp {(Zn + 1) 7i-i/6} (s and n inte- 
gral), where the fist three values of A, are 

A, = 4.36, h2 = 7.54, h, = 10.70, 

and the asymptotic expansion of the Bessel functions yields the approximate 
expression for the roots, 

12 

This formula gives even A, to within 1 % of its exact value. 
If the substitution 2Ru = A3 is made, (13) becomes 

where the integral is taken round the sector bounded by the lines arg A = 0 and 
arg h = in, as the integrals along the straight portions are equal and the integral 
along the circular arc tends to zero as the radius tends to infinity. The poles 
inside the contour are at the points A = &exp (ni/6) and the corresponding 
values of the u, are u1 = Asexp (ni/6), u2 = A,exp (&/2), u3 = A,exp ( -746) .  
There is no pole a t  A = 0 as the numerator and denominator are both of order 
A9 there. The determination of the residues at the poles involves some lengthy 
manipulation. Writing 

Jo{A exp (743)) = ao(A) + ib,(A), 
and Jl{A exp (743)) = a,@) + ib,(h), 

where A, ao, a,, bo, b, are all real, (19) becomes 



where 

W h ,  r )  = Jl(W { - ao(4  a l ( 4  - b o ( 4  b l ( 4  +2/3ao(h) bl(4 - 2j3a1(h) b O W }  
+ al(hr) { - 2Jl(4 b o ( 4  - Jo(4 al(4 + J3J0(h) b l ( 4 1  
+ b l ( W  {2Jl(h)ao(4 - 44  b l ( 4  - 2/3J0(h) al(4). (24) 

The first term in (23) comes from the singularity at the origin. The value of x 
for z < 0 is given by x( - z )  = - ~ ( z ) .  It is clear that the boundary conditions (7) 
and (8) at infinity are satisfied by these values of @ and x. 

The approximation (17) for the correct value (10) of u is valid if the values of h 
used in (20) and (23) are small compared with R). The exponential factor in these 
expressions ensures that the larger values of h only affect them when z is very 
small, so that the approximation can be made provided z is large compared with 
R-4. An alternative argument, suggested by a referee, indicates that the solution 
is, in fact, valid for all z, as it is the first term in a spatially uniform expansion of 
the solution of the complete equations in powers of 1/R. The approximation (17) 
is equivalent to dropping the z-derivatives from the operator on the left-hand 
side of (9) and the solution obtained on the basis of this approximation has 
r-derivatives O( 1) and z-derivatives O(R-l), which justifies the approximation. 
In  confirmation of the validity for all z of the solution given here, Proudman’s 
(1956) proof of the impossibility of a shear layer in a plane z = constant may be 
noted. 

The stream lines for the circulatory motion are shown in figure I and the 
angular velocity w = X/r2 in figure 2. Since z and R only occur in the combination 
z/R in @ and x, it  is easy to see how the veIocities alter as R is increased. The axial 
velocity is the same at points with the same values of z/R but the radial velocity 
decreases by a factor 1/R so that the flow becomes increasingly close to an axial 
flow with the same velocity at  all values of z, i.e. it  approaches a geostrophic 
flow. The inviscid limit is a rotation with the mean angular velocity Ql and an 
axial flow with no net transfer of fluid across any plane z = constant, with the 
direction of flow changing on the cylinder of radius 0*6a, approximately. 

A feature of figure 2 which requires explanation is that, except near the wall, 
the angular velocity, instead of increasing monotonically from Ql - Q, to Ql + Q, 
as z increases from large negative to large positive values, first increases, then 
decreases and finally increases again. This behaviour appears in figure 2, since the 
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curves, which are for positive z only, lie below the axis for z/R and r sufficiently 
small. (The second crossing of the axis by the curve for z/R = 0.001 is probably 
an error due to the difficulty of calculation at very small values of z/R.) In  

ZlR 
FIGURE 1. The stream lines of the circulatory flow. The numbers on the stream lines are 
the values of lW@ and the flow is in the direction indicated if z > 0 is the faster section 
of the cylinder. 

-0.251 

FIGUKE 2. The angular velocity relative to the mean rotation. 

meteorological terms, the behaviour can be described as a cyclonic flow changing 
to an anti-cyclonic flow as z = 0 is approached through positive values. An ex- 
planation can be given in terms of the circulation taken round circles of constant r ,  
which satisfies equation (4), 

where x is the circulation, or rather the deviation of the circulation from that of 
the mean rotation of the fluid, Q2,a2r2. The left-hand side of the equation repre- 
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sents the effect of viscosity on the circulation and by itself would give a mono- 
tonically increasing value for x. The other part of the equation is the only first- 
order inertial effect and is the radial convection of the mean circulation. This 
term is only important when the radial velocity is not negligible so that it does not 
affect the circulation for large z. The direction of the radial velocity is towards 
the axis for negative x and away from the axis for positive z and the convection is 
sufficient to make x positive for some negative values of z and negative for some 
positive values. A comparison of figures 1 and 2 confirms that the minimum 
value of x as a function of z for positive z occurs where the radial velocity is 
largest. 
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